Investigations on exciton recombination and annihilation in TmPyPB-ETL OLEDs using magnetic field effects
Abstract
Although the effect of the electron transport layer (ETL) material TmPyPb on the electroluminescence performance of organic light-emitting diodes (OLEDs) has been extensively studied, the process of TmPyPb regulating exciton recombination and annihilation within the device is still unclear. Here, we fabricated devices of various TmPyPb thicknesses with and without ETL. Subsequently, we measured the magneto-electroluminescence (MEL) of these devices. Specifically, at the same luminance, the triplet-charge annihilation (TQA) process is more likely to occur as the thickness of TmPyPb increases, resulting in a decrease in the maximum luminance of devices. Due to electron leakage and exciton recombination region moving towards the cathode, leading to a decrease in luminance efficiency at first and then an enhancement with an increase in the thickness of TmPyPb. Furthermore, at room temperature, the application of a large bias voltage suppresses singlet fission (SF) processes by modulating the dissociation of singlet polaron pairs (PPS) and the concentration of triplet exciton (T1). This leads to the conversion of SF to the TQA process. At low temperatures, the bias voltage and temperature can regulate the concentration and lifetime of PPS and T1. Therefore, as the temperature decreases, the transition of SF → TQA → triplet–triplet annihilation (TTA) and TQA coexistence → TTA process occurs. Moreover, MEL responses of the TmPyPb-ETL device show a W-linear pattern owing to the combined effect of the hyperfine interaction (HFI) and Zeeman splitting at 145 K. Accordingly, we explored the electroluminescence (EL) performance of TmPyPB-ETL OLEDs and investigated the evolution of SF, TQA, and TTA processes using MEL. Our study revealed the effect of exciton recombination and annihilation in OLEDs with varying thicknesses of TmPyPb.