Issue 35, 2023

The hydration of an oxy-polycyclic aromatic compound: the case of naphthaldehyde

Abstract

The study of the intermolecular interactions of polycyclic aromatic compounds, considered as important pollutants of the Earth's atmosphere since they are emitted by the partial combustion of fuels, is essential to understand the formation and aging of their aerosols. In this study, the hydration of α-naphthaldehyde and β-naphthaldehyde isomers was investigated through a combination of Fourier transform microwave spectroscopy and quantum chemical calculations. Monohydrate structures were observed experimentally for both isomers, with two hydrate structures observed for β-naphthaldehyde and only one for α-naphthaldehyde, consistent with computational predictions. Analysis of the monohydrate structures indicated that the β-isomer exhibits higher hydrophilicity compared to the α-isomer, supported by electronic densities, hydration energies, and structural considerations. Further computational calculations were conducted to explore the planarity of the naphthaldehyde hydrates. Different levels of theory were employed, some of these revealing slight deviations from planarity in the hydrate structures. Low-frequency out-of-plane vibrational modes were examined, and the inertial defect was used to assess the planarity of the hydrates. The results suggested that the hydrates possess a predominantly planar structure, in agreement with the highest level of computational calculations and the absence of c-type transitions in the experimental spectra. Additionally, calculations were extended to dihydrate structures by attaching two water molecules to the naphthaldehyde isomers. The most stable dihydrate structures were predicted to be combinations of the observed monohydrate positions. However, experimental observation of the most stable dihydrate structures was challenging due to their very low vapour pressure, calling for complementary experiments using laser ablation nozzles.

Graphical abstract: The hydration of an oxy-polycyclic aromatic compound: the case of naphthaldehyde

Supplementary files

Article information

Article type
Paper
Submitted
07 Jun 2023
Accepted
12 Aug 2023
First published
23 Aug 2023
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2023,25, 23667-23677

The hydration of an oxy-polycyclic aromatic compound: the case of naphthaldehyde

J. A. Claus, C. Bermúdez, V. Vallet, L. Margulès and M. Goubet, Phys. Chem. Chem. Phys., 2023, 25, 23667 DOI: 10.1039/D3CP02649C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements