Computational screening of high activity and selectivity of CO2 reduction via transition metal single-atom catalysts on triazine-based graphite carbon nitride†
Abstract
Single-atom catalysts (SACs) are emerging as promising catalysts in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Herein, a series of 3d to 5d transition metal atoms supported on triazine-based graphite carbon nitride (TM@TGCN) as a CO2 reduction catalyst are studied via density functional theory computations. Eventually, four TM@TGCN catalysts (TM = Ni, Rh, Os, and Ir) are selected using a five-step screening method, in which Rh@TGCN and Ni@TGCN show a low limiting potential of −0.48 and −0.58 V, respectively, for reducing CO2 to CH4. The activity mechanism shows that the catalysts with a negative d-band center and optimal positive charge can improve the CO2RR performance. Our study provides theoretical guidance for the rational design of highly active and selective catalysts.