Issue 37, 2023

Eu3+ ions as a crystal-field probe for low-symmetry sites in doped phosphors – a case study: Eu3+ at triclinic sites in Li6RE(BO3)3 (RE = Y, Gd), YBO3 and ZnO and at trigonal sites in YAl3(BO3)4

Abstract

We present crystal-field (CF) calculations of energy levels (Ei) of Eu3+ ions doped in various hosts aimed at exploring the low-symmetry properties of CF parameters (CFPs) and reliability of CFP modelling with decreasing site symmetry. The hosts studied are: Li6Y(BO3)3, Li6Gd(BO3)3, YBO3, and ZnO with Eu3+ at triclinic sites; YAl3(BO3)4 with Eu3+ ions at trigonal D3 symmetry. Two independent CFP modelling approaches utilizing the hosts’ structural data are employed: the exchange charge model (ECM) and the superposition model (SPM). We adopt the Eu3+ actual site symmetry and not the approximated one. The Ei values calculated using CFPs modelled by the ECM and SPM mutually agree with the observed ones. For triclinic symmetry, the ECM/CFPs and SPM/CFPs were numerically distinct, yet turned out to be physically equivalent yielding identical rotational invariants, Sk (k = 2, 4, 6) and Ei. For trigonal symmetry, both CFP sets agree numerically, thus Sk and Ei are identical. This disparity poses a dilemma, since the modified crystallographic axis system was used in both approaches. The standardization of the triclinic CFPs using the 3DD package was performed to solve this dilemma. It has enabled discussing standardization aspects in experimental and computed CFP sets and elucidating intricate low-symmetry aspects inherent in CFP sets. Understanding of low-symmetry aspects in CF studies may bring about a better interpretation of the spectroscopic and magnetic properties of rare-earth ion doped host crystals. Thus, our study could provide more deep insights into the importance of clear definitions of axis systems and adequate treatment of actual site symmetry in the modelling of CFPs for low-symmetry cases which is essential for technological applications and engineering of rare-earth activated phosphor materials.

Graphical abstract: Eu3+ ions as a crystal-field probe for low-symmetry sites in doped phosphors – a case study: Eu3+ at triclinic sites in Li6RE(BO3)3 (RE = Y, Gd), YBO3 and ZnO and at trigonal sites in YAl3(BO3)4

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2023
Accepted
18 Aug 2023
First published
21 Aug 2023

Phys. Chem. Chem. Phys., 2023,25, 25537-25551

Eu3+ ions as a crystal-field probe for low-symmetry sites in doped phosphors – a case study: Eu3+ at triclinic sites in Li6RE(BO3)3 (RE = Y, Gd), YBO3 and ZnO and at trigonal sites in YAl3(BO3)4

R. Ghosh, S. Sarkar, Y. Jana, D. Piwowarska, P. Gnutek and C. Rudowicz, Phys. Chem. Chem. Phys., 2023, 25, 25537 DOI: 10.1039/D3CP03090C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements