Formation of carbon propeller-like molecules from starphenes under electron irradiation†
Abstract
Formation of carbon propeller-like molecules (CPLMs) from starphenes on a graphene substrate under electron irradiation with about 100% yield is observed in molecular dynamics simulations using the REBO-1990EVC_CH potential and CompuTEM algorithm. A CPLM consists of three carbon atomic chains connected to the central hexagon and is formed as a result of the spontaneous breaking of bonds between zigzag atomic rows in starphene arms after hydrogen removal by electron impacts. In the absence of the substrate, the CPLM yield is slightly decreased due to sticking between forming chains, while the formation time is increased threefold. The increase of the kinetic electron energy from 45 to 80 keV has no effect on the CPLM formation. Density functional theory (DFT) calculations performed show the stability of CPLMs with respect to the formation of new bonds between carbon atoms in the chains. DFT calculations using the accurate hybrid B3LYP functional provide an insight into the electronic structure of these new molecules.
- This article is part of the themed collection: 2023 PCCP HOT Articles