Coordination engineering of atomically dispersed zirconium on graphene for the oxygen reduction reaction†
Abstract
We study the effect of boron and sulfur doping on graphene with atomically dispersed zirconium as an electrocatalyst for the oxygen reduction reaction (ORR) by using density functional theory (DFT). The use of Zr as a metal center offers a highly stable catalyst due to the high electronegativity difference between Zr and its ligand. The origin of the ORR activity improvement has been investigated thoroughly. Here, we proposed a novel geometric descriptor for an atomically dispersed zirconium on a nitrogen-doped graphene catalyst with an axial oxygen ligand, which is the fractional coordination number of the Zr atom. We found that the fractional coordination number can successfully describe the shift of the dz2 band center in the doped compound, which is related to the binding energy of the Zr to the O ligand. We also found that the oxygen ligand is mobile during the adsorption process of ORR intermediates, and hence it is imperative for the axial oxygen ligand to bind neither too strongly nor too weakly to the Zr atom. The coordination engineering strategy can successfully enhance the ORR activity, shifting the ORR overpotential from 0.75 V and 0.92 V to 0.33 V and 0.32 V. This study provides new insights into the origin of ORR activity by connecting the novel geometric descriptor to the electronic structure and finally it is connected to the ORR activity.