Issue 20, 2023

Engineering photocatalytic ammonia synthesis

Abstract

Photocatalytic ammonia synthesis (PAS) is an emerging zero carbon emission technology, which is critical for mitigating energy crises and achieving carbon neutrality. Herein, we summarize the recent advances and challenges in PAS from an engineering perspective based on its whole chain process, i.e., materials engineering, structure engineering and reaction engineering. For materials engineering, we discuss the commonly used photocatalytic materials including metal oxides, bismuth oxyhalides and graphitic carbon nitride and emerging materials, such as organic frameworks, along with the analysis of their characteristics and regulation methods to enhance the PAS performance. For structure engineering, the design of photocatalysts is described in terms of morphology, vacancy and band, corresponding to the crystal, atom and electron scales, respectively. Moreover, the structure–performance relationship of photocatalysts has been deeply explored in this section. For reaction engineering, we identify three key processes from the chemical reaction and mass transfer, i.e., nitrogen activation, molecule transfer and electron transfer, to intensify and optimize the PAS reaction. Hopefully, this review will provide a novel paradigm for the design and preparation of high-efficiency ammonia synthesis photocatalysts and inspire the practical application of PAS.

Graphical abstract: Engineering photocatalytic ammonia synthesis

Article information

Article type
Tutorial Review
Submitted
26 Jun 2023
First published
04 Oct 2023

Chem. Soc. Rev., 2023,52, 6938-6956

Engineering photocatalytic ammonia synthesis

Y. Shi, Z. Zhao, D. Yang, J. Tan, X. Xin, Y. Liu and Z. Jiang, Chem. Soc. Rev., 2023, 52, 6938 DOI: 10.1039/D2CS00797E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements