Issue 24, 2023

Heterogeneous Pt-catalyzed transfer dehydrogenation of long-chain alkanes with ethylene

Abstract

The dehydrogenation of long-chain alkanes to olefins and alkylaromatics is a challenging endothermic reaction, typically requiring harsh conditions which can lead to low selectivity and coking. More favorable thermodynamics can be achieved by using a hydrogen acceptor, such as ethylene. In this work, the potential of heterogeneous platinum catalysts for the transfer dehydrogenation of long-chain alkanes is investigated, using ethylene as a convenient hydrogen acceptor. Pt/C and Pt–Sn/C catalysts were prepared via a simple polyol method and characterized with CO pulse chemisorption, HAADF-STEM, and EDX measurements. Conversion of ethylene was monitored via gas-phase FTIR, and distribution of liquid products was analyzed via GC-FID, GC-MS, and 1H-NMR. Compared to unpromoted Pt/C, Sn-promoted catalysts show lower initial reaction rates, but better resistance to catalyst deactivation, while increasing selectivity towards alkylaromatics. Both reaction products and ethylene were found to inhibit the reaction significantly. At 250 °C for 22 h, TON up to 28 and 86 mol per mol Pt were obtained for Pt/C and PtSn2/C, respectively, with olefin selectivities of 94% and 53%. The remaining products were mainly unbranched alkylaromatics. These findings show the potential of simple heterogeneous catalysts in alkane transfer dehydrogenation, for the preparation of valuable olefins and alkylaromatics, or as an essential step in various tandem reactions.

Graphical abstract: Heterogeneous Pt-catalyzed transfer dehydrogenation of long-chain alkanes with ethylene

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2023
Accepted
10 Oct 2023
First published
09 Nov 2023
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2023,13, 7123-7135

Heterogeneous Pt-catalyzed transfer dehydrogenation of long-chain alkanes with ethylene

T. de la Croix, N. Claes, S. Eyley, W. Thielemans, S. Bals and D. De Vos, Catal. Sci. Technol., 2023, 13, 7123 DOI: 10.1039/D3CY00370A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements