Issue 2, 2023

Latent spaces for antimicrobial peptide design

Abstract

Current antibacterial treatments cannot overcome the rapidly growing resistance of bacteria to antibiotic drugs, and novel treatment methods are required. One option is the development of new antimicrobial peptides (AMPs), to which bacterial resistance build-up is comparatively slow. Deep generative models have recently emerged as a powerful method for generating novel therapeutic candidates from existing datasets; however, there has been less research focused on evaluating the search spaces associated with these generators from which they sample their new data-points. In this research we employ five deep learning model architectures for de novo generation of antimicrobial peptide sequences and assess the properties of their associated latent spaces. We train a RNN, RNN with attention, WAE, AAE and Transformer model and compare their abilities to construct desirable latent spaces in 32, 64, and 128 dimensions. We assess reconstruction accuracy, generative capability, and model interpretability and demonstrate that while most models are able to create a partitioning in their latent spaces into regions of low and high AMP sampling probability, they do so in different manners and by appealing to different underlying physicochemical properties. In this way we demonstrate several benchmarks that must be considered for such models and suggest that for optimization of search space properties, an ensemble methodology is most appropriate for design of new AMPs. We design an AMP discovery pipeline and present candidate sequences and properties from three models that achieved high benchmark scores. Overall, by tuning models and their accompanying latent spaces properly, targeted sampling of new anti-microbial peptides with ideal characteristics is achievable.

Graphical abstract: Latent spaces for antimicrobial peptide design

Associated articles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Aug 2022
Accepted
09 Feb 2023
First published
16 Feb 2023
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2023,2, 441-458

Latent spaces for antimicrobial peptide design

S. Renaud and R. A. Mansbach, Digital Discovery, 2023, 2, 441 DOI: 10.1039/D2DD00091A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements