Abstract
Coordinatively unsaturated transition-metal compounds stabilized by supplemental electron donation from π-basic ligands are described as “operationally unsaturated”. Such complexes are useful analogues of active catalyst structures that readily react with substrate molecules. We report that [Ph2P(C6H4)NCHC(CH3)2]− (L1) effectively stabilizes Ru(II) in an operationally unsaturated form. In the absence of Lewis bases, the 1-azaallyl group of L1 dominantly coordinates through a κ1-N mode, but can readily and reversibly isomerize to an η3-NCC coordination mode to stabilize the metal. As an operationally unsaturated complex, Ru(Cp*)(L1) dimerizes at low temperature. At ambient temperature it rapidly reacts with pyridine or PPh3 to form an adduct. These findings with L1 demonstrate that changes in the hapticity of a 1-azaallyl fragment offer an alternative means to stabilize low-coordinate metals.