Broadband-excited and green-red tunable emission in Eu2+-sensitized Ca8MnTb(PO4)7 phosphors induced by structural-confined cascade energy transfer
Abstract
Novel green-red color-tunable Ca8(Mg,Mn)Tb(PO4)7:Eu2+ phosphors have been synthesized via the traditional solid-state method. Since Tb3+/Mn2+ ions are the parent ions in the lattice, the structural confinement occurs when the sensitizer Eu2+ is introduced into the Ca8(Mg,Mn)Tb(PO4)7:Eu2+ structure. The distance from Eu2+ to Tb3+/Mn2+ is confined in the 5 Å range, which induces a highly efficient energy transfer process. At Eu2+ 350 nm excitation, Ca8MgTb(PO4)7:Eu2+ shows dominant Tb3+ green emission with almost-vanished Eu2+ emission. Red emission is clearly observed as Mn2+ ions doping into Ca8MgTb(PO4)7:Eu2+, and color-tuning from green to red is realized by varying the Mn2+ contents. Eu2+–Tb3+–Mn2+ cascade energy transfer process is in effect due to short Eu2+–Tb3+/Mn2+ and Tb3+–Mn2+ distances, which is verified by PL and decay variations. Meanwhile, the Ca8(Mg,Mn)Tb(PO4)7:Eu2+ phosphor indicates good thermal stability and maintained the 45% emission level at 150 °C, which demonstrates their potential applications in white light LEDs.