A {Cu2I3−}∞ chain hybrid with two-step phase transition, switchable dielectrics, thermochromism and piezochromism†
Abstract
Stimuli-responsive smart materials have applications in a range of technologies. Herein, we present a hybrid (1), built from Me3EtN+ organic cations and {Cu2I3−}∞ inorganic chains with Cu⋯Cu metal⋯metal interactions. The two-step phase transition undergone in 1 on the first heating and the phase transition at a lower temperature show symmetry-broken features, leading to switchable dielectrics; the one at a higher temperature displays isomorphic characteristics. Besides the switchable dielectrics, 1 exhibited other multi-stimuli-responsive functionalities, including thermochromism and piezochromism. Combining temperature-dependent powder and single crystal X-ray diffraction, as well as variable-temperature UV-visible absorption spectrum and EPR spectrum analyses, it is demonstrated that the thermochromism is due to the synergy of anharmonic fluctuations with electron–phonon couplings, and the piezochromism arises from compression inducing a lattice distortion in 1. Our study provides insight into understanding the thermochromic and piezochromic mechanisms of cuprous halide-based hybrids, and paves a pathway for designing new multi-stimuli-responsive hybrid materials.