Abstract
In this study, we report a group of alkali metal aluminates bearing bis(organoamido)phosphane ligand. The starting complex {[PhP(NtBu)2]AlMe2}Li·OEt2 (1) was prepared by stepwise deprotonation of the parent PhP(NHtBu)2 by nBuLi and AlMe3. Further derivatization of aluminate 1 was performed by the virtual substitution of lithium -{[PhP(NtBu)2]AlMe2}K (2), methyl substituents – {[PhP(NtBu)2]AlH2}Li·THF (3), modification of steric bulk and induction effects on the phosphorus atom – {[tBuP(N-2,6-iPr2C6H3)2]AlMe2}Li·(OEt2)2 (4), and phosphorus atom oxidation state {[Ph(Y)P(NtBu)2]AlMe2}Li (Y = O (5), S (6), Se (7), Te (8)). The structure causing non-covalent interactions in 1–4 were evaluated with the help of theoretical calculations and topological analysis ranging from π-electron system-metal to agostic interactions of various types. The further reactions of 1 with various nucleophiles were found to be a versatile tool for the preparation of iminophosphonamides via the formation of P–E bond (E = Si, Ge, Sn, Pb, P, and C) and followed by P(III) → P(V) tautomeric shift.