Issue 5, 2023

Kinetics and products study of the reaction of Cl atoms with methyl dichloroacetate: reactivity, mechanism, and environmental implications

Abstract

The relative rate coefficient of the gas-phase reaction of methyl dichloroacetate (CHCl2C(O)OCH3) with Cl atoms (kCl) was obtained at 298 K and atmospheric pressure. All the experiments were performed in a 480 L Pyrex glass atmospheric simulation reactor coupled to an “in situ” Fourier transform infrared (FTIR) spectrometer. The rate coefficient obtained from the average of different experiments was: kCl = (3.31 ± 0.88) × 10−13 cm3 per molecule per s. In addition, the product studies were performed in under similar conditions to those of the kinetic experiments in two different photoreactors by in situ FTIR spectroscopy and GC-MS/SPME. Dichloroacetic acid, phosgene, methyl trichloroacetate, and carbon monoxide were the main products identified and quantified. The obtained product yields for the reaction with Cl atoms were as follows: (24 ± 2), (19 ± 3), (16 ± 1), and (44 ± 2)% for Cl2CHCOOH, COCl2, CO, and CCl3C(O)OCH3, respectively. The initial pathway for the degradation of methyl dichloroacetate in the reaction with Cl atoms occurs via H-atom abstraction at the alkyl groups. The atmospheric implications of the reactions were assessed by the estimation of the tropospheric lifetime of τCl = 3 years. In addition, an acidification potential of 0.45 was estimated, suggesting a possible impact of the emission of methyl dichloroacetate on the rainfall acidification. On the other hand, significant global warming potentials of 8.2, 2.2, and 0.6 were calculated for the studied chloroester for the time horizons of 20, 100, and 500 years, respectively. Chlorinated persistent products, such as dichloroacetic acid, could have an impact on the atmosphere and other environmental matrixes as well as on human health and the biota.

Graphical abstract: Kinetics and products study of the reaction of Cl atoms with methyl dichloroacetate: reactivity, mechanism, and environmental implications

Article information

Article type
Paper
Submitted
05 Jan 2023
Accepted
15 Mar 2023
First published
15 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2023,3, 872-881

Kinetics and products study of the reaction of Cl atoms with methyl dichloroacetate: reactivity, mechanism, and environmental implications

V. G. Straccia C, C. B. Rivela, M. B. Blanco and M. A. Teruel, Environ. Sci.: Atmos., 2023, 3, 872 DOI: 10.1039/D3EA00004D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements