Issue 8, 2023

A ternary system exploiting the full solar spectrum to generate renewable hydrogen from a waste biomass feedstock

Abstract

A solar-driven system is proposed capable of hydrogen production from waste biomass with low carbon and water footprints. The ternary system consists of a membrane-based waste biomass concentrator (WBC), a biomass preconditioning reactor (BPR) integrated with an array of hybrid PV-thermal (PVT) collectors, and a flow electrolysis cell (FEC) equipped with a custom, high-performance electrode – NiMo alloy deposited onto Ni foam. An innovative full-solar-spectrum hybrid PVT reflector-concentrator was constructed to confirm performance; this enabled a thermal efficiency of up to ∼50% to be achieved when operating the BPR at 120–150 °C, while also converting ∼8% of the solar flux to electricity for the FEC. The solar-thermal BPR can reform recovered waste biomass (i.e., a sugar-containing liquid feedstock) into a bio-alcohol (5-hydroxymethylfurfural) with a yield of 25 mol%, with the transformed biomass then used to feed the anodic compartment of the FEC. Within the FEC, biomass electrolysis using the NiMo catalyst facilitated hydrogen production, offering a low energy consumption of 40–53 kW h kg−1, which is 16–28% more efficient than alkaline water splitting using Ni foam electrodes. The ternary system achieved a 7.5% overall solar-to-hydrogen efficiency, additional revenue from clean water production (with >80% water reclaimed), and a value-added chemical by-product (2,5-furandicarboxylic acid at a 3–10% yield from the waste sugar stream). This work presents a new route towards efficient and economically feasible renewable hydrogen production—a system which can underpin a circular economy.

Graphical abstract: A ternary system exploiting the full solar spectrum to generate renewable hydrogen from a waste biomass feedstock

Supplementary files

Article information

Article type
Paper
Submitted
24 Feb 2023
Accepted
04 Jul 2023
First published
05 Jul 2023

Energy Environ. Sci., 2023,16, 3497-3513

A ternary system exploiting the full solar spectrum to generate renewable hydrogen from a waste biomass feedstock

Q. Li, L. Jiang, G. Huang, D. Wang, J. Shepherd, R. Daiyan, C. N. Markides, R. A. Taylor and J. Scott, Energy Environ. Sci., 2023, 16, 3497 DOI: 10.1039/D3EE00603D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements