Issue 7, 2023

Diosmetin alleviates benzo[a]pyrene-exacerbated H1N1 influenza virus-induced acute lung injury and dysregulation of inflammation through modulation of the PPAR-γ-NF-κB/P38 MAPK signaling axis

Abstract

The severity of a viral respiratory illness was greatly exacerbated after exposure to a contaminant containing benzo[a]pyrene (B[a]P). Flavonoid-rich fruit intake has gained intense interest due to their health-promoting benefits for viral respiratory diseases, including influenza viruses. In our study, diosmetin (3′,5,7-trihydroxy-4′-methoxyflavone), a naturally occurring hydroxylated methoxyflavone that is abundant in Citrus fruits, was explored for its effects on B[a]P-exacerbated H1N1 influenza virus-mediated inflammation and lung injury. Initially, in vivo results demonstrated that diosmetin protected against H1N1 virus-elicited acute lung injury. Simultaneously, H1N1 virus or B[a]P-stimulated A549 cells treated with diosmetin inhibited NF-κB and P-P38 activation, resulting in suppression of pro-inflammatory cytokines and apoptosis. Interestingly, diosmetin obviously promoted the expression of PPAR-γ as well as nuclear translocation of PPAR-γ, whereas, PPAR-γ inhibition by GW9662 weakened the inhibitory effects of diosmetin on H1N1 virus or B[a]P-mediated activation of NF-κB and P-P38, elevated expression of pro-inflammatory mediators as well as apoptosis. Furthermore, it was surprising to discover that mice exposed to both B[a]P and H1N1 viruses contributed to exacerbated acute lung injury, which were significantly ameliorated by diosmetin administration. In vitro studies showed that A549 cells with the combination of B[a]P and H1N1 virus augmented NF-κB and P-P38 activation, accompanied by higher levels of pro-inflammatory mediators and apoptosis, all of which were also significantly reduced by diosmetin treatment. Repressing PPAR-γ abrogated the inhibitory effects of diosmetin on B[a]P-exacerbated H1N1 virus-mediated NF-κB and P-P38 activation, inflammation, and apoptosis in A549 cells. Our findings suggest that diosmetin protected against B[a]P-exacerbated H1N1 virus-mediated lung injury by suppressing the exacerbation of NF-κB and P38 kinase activation in a PPAR-γ-dependent manner, suggesting potential benefits for B[a]P-exacerbated influenza-related illness therapeutics.

Graphical abstract: Diosmetin alleviates benzo[a]pyrene-exacerbated H1N1 influenza virus-induced acute lung injury and dysregulation of inflammation through modulation of the PPAR-γ-NF-κB/P38 MAPK signaling axis

Article information

Article type
Paper
Submitted
02 Sep 2022
Accepted
05 Mar 2023
First published
21 Mar 2023

Food Funct., 2023,14, 3357-3378

Diosmetin alleviates benzo[a]pyrene-exacerbated H1N1 influenza virus-induced acute lung injury and dysregulation of inflammation through modulation of the PPAR-γ-NF-κB/P38 MAPK signaling axis

B. Zhou, L. Wang, S. Yang, Y. Liang, Y. Zhang, X. Pan and J. Li, Food Funct., 2023, 14, 3357 DOI: 10.1039/D2FO02590F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements