Issue 8, 2023

Impact of cooking methods of red-skinned onion on metabolic transformation of phenolic compounds and gut microbiota changes

Abstract

Herein, we investigated the stability and bioaccessibility of phenolics in differently cooked red-skinned onion (RSO) and consequently their impact on the gut microbiota and metabolism of phenolics. In fact, the different processes used to cook vegetables can modify and re-arrange the molecular profiles of bioactive compounds, such as phenolics in phenolic-rich vegetables, such as RSO. Fried and grilled RSO were compared to raw RSO and a blank control and subjected to oro-gastro-intestinal digestion and subsequent colonic fermentation. For upper gut digestion, the INFOGEST protocol was used, and for lower gut fermentation, a short-term batch model, namely, MICODE (multi-unit in vitro colon gut model), was employed. During the process, phenolic compound profile (through high-resolution mass spectrometry) and colon microbiomics (qPCR of 14 core taxa) analyses were performed. According to the results, the degradation driven by the colon microbiota of RSO flavonols resulted in the accumulation of three main metabolites, i.e., 3-(3′-hydroxyphenyl)propanoic acid, 3-(3′-hydroxyphenyl)acetic acid and 3-(3′,4′-dihydroxyphenyl)acetic acid. Also, colonic fermentation of raw onions resulted in a substantial increase in beneficial taxa, which was larger compared to the heat-treated onions, particularly Lactobacillales and beneficial clostridia. Also, a higher level of inhibition of opportunistic bacteria was seen for the raw onion samples, namely, Clostridium perfringens group and Escherichia coli. Thus, our results showed that RSO, and especially the raw one, is an excellent dietary source of flavonols that are strongly metabolized by gut bacteria and can positively modulate the gut microbiota. Although additional in vivo studies are necessary, this work is one of the first to explore how RSO processed with different cooking methods can differently impact the phenolic metabolism and microbiota composition in the large intestine of humans, fine-tuning the antioxidant nature of foods.

Graphical abstract: Impact of cooking methods of red-skinned onion on metabolic transformation of phenolic compounds and gut microbiota changes

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2023
Accepted
21 Mar 2023
First published
22 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Food Funct., 2023,14, 3509-3525

Impact of cooking methods of red-skinned onion on metabolic transformation of phenolic compounds and gut microbiota changes

A. Cattivelli, L. Nissen, F. Casciano, D. Tagliazucchi and A. Gianotti, Food Funct., 2023, 14, 3509 DOI: 10.1039/D3FO00085K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements