1-Oleate-2-palmitate-3-linoleate glycerol improves lipid metabolism and gut microbiota and decreases the level of pro-inflammatory cytokines†
Abstract
Numerous studies have shown that 1-oleate-2-palmitate-3-linoleate (OPL) is the most abundant TAG in Chinese human milk, which is significantly different from human milk in other countries, where 1,3-oleate-2-palmitate (OPO) is the most abundant TAG. However, there have been few studies revealing the nutritional outcomes of OPL. Hence, the present study investigated the effects of an OPL supplementation diet on mice's nutritional outcomes, including liver lipid parameters, inflammation, lipidomes in the liver and serum, and the gut bacterial community. A high OPL (HOPL) diet decreased body weight, weight gain, liver TG, TC and LDL-C, and TNF-α, IL-1β, and IL-6 in mice relative to low OPL (LOPL) diet. Lipidomics results showed that HOPL feeding elevated the level of anti-inflammatory lipids, such as very long-chain Cer, LPC, PC and ether TG in the liver, and serum PC, and reduced the level of oxidized lipids (liver OxTG, HexCer 18:1;2O/22:0) and serum TG. In the gut, intestinal probiotics, including Parabacteroides, Alistipes, Bacteroides, Alloprevotella and Parasutterrlla, were enriched in the HOPL-fed group. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that the HOPL diet up-regulated energy metabolism and the immune system. Correlation analysis further showed that there was a relationship among the gut bacteria, lipidome profile, and nutritional outcomes. Altogether, these results indicated that an OPL-supplemented diet improved lipid metabolism and gut bacteria, reducing the level of pro-inflammatory cytokines.