Issue 6, 2023

Tumour associated vasculature-on-a-chip for the evaluation of microbubble-mediated delivery of targeted liposomes

Abstract

The vascular system is the primary route for the delivery of therapeutic drugs throughout the body and is an important barrier at the region of disease interest, such as a solid tumour. The development of complex 3D tumour cultures has progressed significantly in recent years however, the generation of perfusable vascularised tumour models still presents many challenges. This study presents a microfluidic-based vasculature system that can be induced to display properties of tumour-associated blood vessels without direct incorporation of tumour cells. Conditioning healthy endothelial–fibroblast cell vasculature co-cultures with media taken from tumour cell cultures was found to result in the formation of disorganised, tortuous networks which display characteristics consistent with those of tumour-associated vasculature. Integrin αvβ3, a cell adhesion receptor associated with angiogenesis, was found to be upregulated in vasculature co-cultures conditioned with tumour cell media (TCM) – consistent with the reported αvβ3 expression pattern in angiogenic tumour vasculature in vivo. Increased accumulation of liposomes (LSs) conjugated to antibodies against αvβ3 was observed in TCM networks compared to non-conditioned networks, indicating αvβ3 may be a potential target for the delivery of drugs specifically to tumour vasculature. Furthermore, the use of microbubbles (MBs) and ultrasound (US) to further enhance the delivery of LSs to TCM-conditioned vasculature was investigated. Quantification of fluorescent LS accumulation post-perfusion of the vascular network showed 3-fold increased accumulation with the use of MBs and US, suggesting that targeted LS delivery could be further improved with the use of locally administered MBs and US.

Graphical abstract: Tumour associated vasculature-on-a-chip for the evaluation of microbubble-mediated delivery of targeted liposomes

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2022
Accepted
06 Feb 2023
First published
06 Feb 2023
This article is Open Access
Creative Commons BY license

Lab Chip, 2023,23, 1674-1693

Tumour associated vasculature-on-a-chip for the evaluation of microbubble-mediated delivery of targeted liposomes

M. D. Bourn, S. Z. Mohajerani, G. Mavria, N. Ingram, P. L. Coletta, S. D. Evans and S. A. Peyman, Lab Chip, 2023, 23, 1674 DOI: 10.1039/D2LC00963C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements