Issue 12, 2023

Development of a microfluidic device to observe dynamic flow around the villi generated by deformation of small intestinal tissue

Abstract

The mucosal immune system in the small intestine is crucial for human health. For the immune response, mutual contact between gut bacteria and intestinal epithelial cells is important because there are unique epithelial cells specialized in gut bacteria sampling on the villi. The travel of gut bacteria to the villi is led by a complex dynamic flow in the small intestine. However, the complex dynamic flow around the villi has not yet been explored at a micro scale. In this study, we proposed a microfluidic device to observe the flow around the villi generated by the dynamic deformation of small intestinal tissue. The microfluidic device had 3 pneumatic actuators to drive small intestinal tissue. The pneumatic actuator with small intestinal tissue achieved a sufficient stroke of 1000 mm and reproducibility. A mouse's immotile small intestinal tissue was driven by the pneumatic actuator, resulting in dynamic flow; the villi dynamics can be explored. The dynamic flow of the villi is observed using 1 μm fluorescent microbeads as markers. Dynamic flow in the small intestinal tissue is classified into three modes based on the bead speed. Among these modes, in transitional flow, the microbeads slow down around the villi, resulting in an increased probability of microbead and villi adhesion. Two further unique flow behaviors are as follows: the fluorescent microbeads float and remain within the gaps of villi under the dynamic deformation of the small intestinal tissue, and a stirring flow occurs in the dent of the small intestinal tissue.

Graphical abstract: Development of a microfluidic device to observe dynamic flow around the villi generated by deformation of small intestinal tissue

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2023
Accepted
13 May 2023
First published
22 May 2023

Lab Chip, 2023,23, 2729-2737

Development of a microfluidic device to observe dynamic flow around the villi generated by deformation of small intestinal tissue

S. Kuriu, N. Yamamoto and T. Ishida, Lab Chip, 2023, 23, 2729 DOI: 10.1039/D3LC00172E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements