Contactless acoustic tweezer for droplet manipulation on superhydrophobic surfaces†
Abstract
Droplet manipulation on superhydrophobic surfaces (DMSS) without conventional pipetting is an emerging liquid handling technology, which can be potentially used for diagnostic, analysis, and synthetic processes. Despite notable progress, controlling droplet motion on superhydrophobic surfaces by contactless acoustic waves is rarely reported. Herein, we report a contactless acoustic tweezer (CAT) for DMSS based on establishing ultrasonic standing wave between an ultrasound transducer (UST) and a superhydrophobic substrate to manipulate droplets without physical contact. The CAT utilizes acoustic radiation forces to trap and move droplets on superhydrophobic surfaces, which allows for precise and controllable movement of droplets by controlling the movement of the UST. Small droplets with volume less than 20 μL can be levitated in mid-air for out-plane manipulation, and large droplets with volume up to 500 μL can be trapped for in-plane manipulation. Experimental results demonstrate the versatility of the CAT for manipulating droplets with various compositions and volumes on various superhydrophobic substrates, offering a versatile and cross-contamination-free liquid handling approach for applications, including but not limited to high-throughput surface-enhanced Raman scattering.