Portable rotary PCR system for real-time detection of Pseudomonas aeruginosa in milk†
Abstract
The rapid quantitative detection of Pseudomonas aeruginosa in milk is of great significance to food safety. Quantitative real-time polymerase chain reaction (qPCR) technology is a good choice to meet this requirement. A good qPCR system should show the advantages of being low cost, having low-power consumption, having potential for miniaturization and be portable. However, most of the time-domain-based qPCR systems reported to date do not meet these requirements. In this study, we propose a novel real-time rotary PCR reaction system (RRP) that meets all the abovementioned specifications, and contains four modules: a heating control module, a disposable PCR capillary tube, a mechanical control module, and a photoelectric detection module. The volume of our homemade-PCR capillary tube is only 3 μL. The total manufacturing cost is cheaper than $200, and the capillary tube is about 1.4 cents. The size parameter of the RRP is less than 300 mm × 150 mm × 150 mm, using low mobile power sources to operate. All the features mean that the RRP meets the advantages of low sample volumes, enhanced thermal conductivity and being portable. Through conducting the experimental quantitative detection of Pseudomonas aeruginosa in milk and theoretical simulations by COMSOL, we prove the feasibility of this rotary PCR real-time detection system, which has broad application prospects in the rapid detection of bacteria and food safety.