Issue 20, 2023

Reflow-molded deep concave microwell arrays for robust and large-scale production of embryoid bodies

Abstract

Embryonic stem cell (ESC)-derived aggregates, called embryoid bodies (EBs), are powerful in vitro models used to study human development and disease. However, the cost-effective and large-scale production of homogeneous EBs still remains a challenge. Here, we report a rapid, straightforward method for fabricating closely arrayed deep concave microwells, enabling the mass production of uniform EBs from single cell suspensions. By simply combining micromilling, caramel replica molding, and thermal reflow, we generate convex micromolds with high aspect ratios and excellent surface smoothness. Benefitting from the nature of reflow, this method can produce rounded bottom polydimethylsiloxane (PDMS) microwells, which are not easily achieved with standard soft lithography techniques but critical to producing spherical EBs. To achieve optimal concave microwells, we investigated the effect of thermal reflow temperature and time on the surface smoothness and roundness of the finished microwells. In addition, to further improve the utility of this method, we also investigated the effect of microwell aspect ratio (AR) on the loss of EBs during medium manipulation. The capability of this deep concave microwell system was validated by rapidly generating a large number of human embryonic stem cell (hESC)-derived EBs and then efficiently differentiating them into a cardiac lineage. The proposed fabrication method and deep concave microwell platform are highly practical, and thus will benefit the mass production of EBs for potential tissue regeneration and cell therapy applications.

Graphical abstract: Reflow-molded deep concave microwell arrays for robust and large-scale production of embryoid bodies

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2023
Accepted
30 Aug 2023
First published
01 Sep 2023

Lab Chip, 2023,23, 4378-4389

Reflow-molded deep concave microwell arrays for robust and large-scale production of embryoid bodies

X. Han, Q. Zhang, H. He, Q. Zhao and G. Li, Lab Chip, 2023, 23, 4378 DOI: 10.1039/D3LC00504F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements