Dynamic polymer nanocomposites towards strain sensors and customizable resistors†
Abstract
In the future, well-engineered and optimized flexible electronic devices will be woven into everyday accessories such as clothes, furniture, and healthcare monitoring devices. Herein, a series of multifunctional, flexible, conductive, and self-healing polymer nanocomposites that contribute to multiple electronic applications are reported. RAFT polymerization is employed in a modular approach to synthesize dynamic polymer nanocomposites (DPNs) using different architectures including interpenetrating (IPN) and block copolymer (BCN) networks through dynamic Diels–Alder and hydrogen bond cross-links. Structure–property relationships highlighting the impact of network architecture, chain-length, cross-link density, and carbon nanotubes loading are explored. Controlled addition of multiwalled carbon nanotubes (CNTs) as nano-reinforcements produces electrically conductive and mechanically enhanced DPNs with demonstrated application in the regulation of current flow towards a dimmable light emitting diode (LED). Further application of DPNs as strain sensors and customizable/tunable electrical resistors is demonstrated. Overall, this report furnishes new insights into designing next-generation custom resistors and materials for smart LED lighting.
- This article is part of the themed collection: SDG3: Good Health and Well-Being