High-strength, low infrared-emission nonmetallic films for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage†
Abstract
High-strength nonmetallic materials with low infrared (IR) emission are rare in nature, yet highly anticipated especially in military and aerospace fields for thermal camouflage, IR stealth, energy-saving heating. Here, we reported a high-strength (422 MPa) nonmetallic film with very low IR emissivity (12%), realized by constructing alternating multilayered structures consisting of successive MXene functionalized outer layers and continuous GO reinforced inner layers. This nonmetallic film is capable of competing with typical stainless steel (415 MPa, 15.5%), and exhibits remarkable thermal camouflage performance (ΔT = 335 °C), ultrahigh Joule heating capability (350 °C at 2 V), excellent solar-to-thermal conversion efficiency (70.2%), and ultrahigh specific electromagnetic interference shielding effectiveness (83 429 dB cm−1). Impressively, these functionalities can be maintained well after prolonged outdoor aging, and even after undergoing harsh application conditions including strong acid/alkali and boiling water immersion, and cryogenic (−196 °C) temperature.