Issue 10, 2023

Remarkable sol–gel transition of PNIPAm-based nanogels via large steric hindrance of side-chains

Abstract

While the block/graft/branched structures are widely studied to favor the reversible physical gelation, there are no reports regarding the steric hindrance-induced sol–gel transition of PNIPAm-based nanogels above their phase transition temperature (Tp). Generally, the introduction of hydrophobic components into poly (N-isopropylacrylamide) (PNIPAm)-based nanogels only led to collapse and lower viscosity instead of the sol–gel transition upon heating above the Tp. Herein, the results of temperature-variable 1HNMR and FTIR confirm that the introduction of hydrophobic N-tert-butylacrylamide (TBA) with the large steric hindrance of side groups of N-tert-butyl to form NIPAm/TBA copolymer nanogels can dramatically slow down the dehydration of all the hydrophobic alkyl groups, thus resulting in the formation of thermally induced sol–gel transition above the Tp. Furthermore, the N-acrylamido-L-phenylalanine (APhe) monomer composed of a strongly water absorbing carboxyl group and a phenyl group with larger steric hindrance is studied to form P(NIPAm/TBA/APhe) terpolymer nanogels which can self-assemble into colorful colloidal crystals. Surprisingly, owing to the synergistic effect between the water absorbing carboxyl group and the steric hindrance group on the same side group, these colloidal crystals can achieve sol–gel transition above Tp, forming a physically crosslinked colorful hydrogel. This work is expected to greatly advance the design, synthesis, and application of the sol–gel transition of PNIPAm-based nanogel systems.

Graphical abstract: Remarkable sol–gel transition of PNIPAm-based nanogels via large steric hindrance of side-chains

Supplementary files

Article information

Article type
Communication
Submitted
10 Jun 2023
Accepted
17 Jul 2023
First published
18 Jul 2023

Mater. Horiz., 2023,10, 4452-4462

Remarkable sol–gel transition of PNIPAm-based nanogels via large steric hindrance of side-chains

X. Li, X. Li, T. Xia, W. Chen, K. J. Shea and X. Lu, Mater. Horiz., 2023, 10, 4452 DOI: 10.1039/D3MH00892D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements