Issue 4, 2023

Durability studies of underwater superoleophobic graphene oxide coated wire mesh

Abstract

Due to the increased industrial oily wastewater, developing a successful oil/water separation mechanism is a ubiquitous challenge. As oil/water separation is an interfacial phenomenon, a straightforward way is to utilize the special wettability of novel materials towards oil and water. In this work, we intend to construct a durable membrane/mesh that can have a selective response towards oil and water based on the difference in surface tension. Graphene oxide (GO) is one such material that exhibits in-air hydrophilicity and underwater superoleophobicity. GO-coated wire meshes can act as membranes with excellent efficiency for oil/water separation, but they lack long-term durability for repeated use under different environments. We created GO*-coated wire meshes by dip coating multiple layers of GO with intermediate air plasma treatment. While the multiple steps of coating ensured complete coverage of the mesh with GO, plasma treatment improved the binding of the GO coating to the wire mesh. After coating five GO layers, the mesh is subjected to mild plasma treatment to improve the porosity. The GO*-coated mesh is extremely hydrophilic in air, and the underwater oil contact angles (CA) are ≥125° for different oils. To test the long-term durability, the GO*-coated mesh is continuously immersed underwater in acidic and basic media, and the underwater oil CA is measured at different immersion times. The initial durability results are very promising and show that the GO*-coated mesh retains a significant level of underwater oleophobicity even after 60 days of continuous immersion in water.

Graphical abstract: Durability studies of underwater superoleophobic graphene oxide coated wire mesh

Supplementary files

Article information

Article type
Communication
Submitted
29 Sep 2022
Accepted
14 Jan 2023
First published
25 Jan 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 1060-1069

Durability studies of underwater superoleophobic graphene oxide coated wire mesh

P. Saikiran, M. Dhole and N. Bhandaru, Nanoscale Adv., 2023, 5, 1060 DOI: 10.1039/D2NA00667G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements