Issue 7, 2023

Gold nanoparticle shape dependence of colloidal stability domains

Abstract

Controlling the spatial arrangement of plasmonic nanoparticles is of particular interest to utilize inter-particle plasmonic coupling, which allows changing their optical properties. For bottom-up approaches, colloidal nanoparticles are interesting building blocks to generate more complex structures via controlled self-assembly using the destabilization of colloidal particles. For plasmonic noble metal nanoparticles, cationic surfactants, such as CTAB, are widely used in synthesis, both as shaping and stabilizing agents. In such a context, understanding and predicting the colloidal stability of a system solely composed of AuNPs and CTAB is fundamentally crucial. Here, we tried to rationalize the particle behavior by reporting the stability diagrams of colloidal gold nanostructures taking into account parameters such as the size, shape, and CTAB/AuNP concentration. We found that the overall stability was dependent on the shape of the nanoparticles, with the presence of sharp tips being the source of instability. For all morphologies evaluated here, a metastable area was systematically observed, in which the system aggregated in a controlled way while maintaining the colloidal stability. Combining different strategies with the help of transmission electron microscopy, the behavior of the system in the different zones of the diagrams was addressed. Finally, by controlling the experimental conditions with the previously obtained diagrams, we were able to obtain linear structures with a rather good control over the number of particles participating in the assembly while maintaining good colloidal stability.

Graphical abstract: Gold nanoparticle shape dependence of colloidal stability domains

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2022
Accepted
21 Feb 2023
First published
27 Feb 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 2017-2026

Gold nanoparticle shape dependence of colloidal stability domains

A. Carone, S. Emilsson, P. Mariani, A. Désert and S. Parola, Nanoscale Adv., 2023, 5, 2017 DOI: 10.1039/D2NA00809B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements