Issue 14, 2023

An ultrastable La-MOF for catalytic hydrogen transfer of furfural: in situ activation of the surface

Abstract

The poor stability of metal–organic frameworks (MOFs) severely limits their catalytic application. The in situ activation of stable MOF catalysts not only simplifies the catalytic process, but also reduces energy consumption. Therefore, it is meaningful to explore the in situ activation of the MOF surface in the actual reaction process. In this paper, a novel rare-earth MOF La2(QS)3(DMF)3 (LaQS) was synthesized, which exhibited ultra-high stability not only in organic solvents but also in aqueous solutions. When LaQS was used as a catalyst for the catalytic hydrogen transfer (CHT) of furfural (FF) to furfuryl alcohol (FOL), the FF conversion and FOL selectivity reached 97.8% and 92.1%, respectively. Meanwhile, the high stability of LaQS ensures an enhanced catalytic cycling performance. The excellent catalytic performance is mainly attributed to the acid–base synergistic catalysis of LaQS. More importantly, it has been confirmed by control experiments and DFT calculation that the in situ activation in catalytic reactions leads to the formation of acidic sites in LaQS, together with the uncoordinated oxygen atoms of sulfonic acid groups in LaQS as Lewis bases, which can synergistically activate FF and isopropanol. Finally, the mechanism of in situ activation-caused acid–base synergistic catalysis of FF is speculated. This work provides meaningful enlightenment for the study of the catalytic reaction path of stable MOFs.

Graphical abstract: An ultrastable La-MOF for catalytic hydrogen transfer of furfural: in situ activation of the surface

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2022
Accepted
27 Feb 2023
First published
28 Feb 2023

Nanoscale, 2023,15, 6645-6654

An ultrastable La-MOF for catalytic hydrogen transfer of furfural: in situ activation of the surface

X. Zhao, L. Sun, Z. Zhai, D. Tian, Y. Wang, X. Zou, C. Min and C. Zhuang, Nanoscale, 2023, 15, 6645 DOI: 10.1039/D2NR07151G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements