Issue 47, 2023

In silico design of a lipid-like compound targeting KRAS4B-G12D through non-covalent bonds

Abstract

One of the most common drivers in human cancer is the peripheral membrane protein KRAS4B, able to promote oncogenic signalling. To signal, oncogenic KRAS4B not only requires a sufficient nucleotide exchange, but also needs to recruit effectors by exposing its effector-binding sites while anchoring to the phospholipid bilayer where KRAS4B-mediated signalling events occur. The enzyme phosphodiesterase-δ plays an important role in sequestering KRAS4B from the cytoplasm and targeting it to cellular membranes of different cell species. In this work, we present an in silico design of a lipid-like compound that has the remarkable feature of being able to target both an oncogenic KRAS4B-G12D mutant and the phosphodiesterase-δ enzyme. This double action is accomplished by adding a lipid tail (analogous to the farnesyl group of the KRAS4B protein) to an previously known active compound (2H-1,2,4-benzothiadiazine, 3,4-dihydro-,1,1-dioxide). The proposed lipid-like molecule was found to lock KRAS4B-G12D in its GDP-bound state by adjusting the effector-binding domain to be blocked by the interface of the lipid bilayer. Meanwhile, it can tune GTP-bound KRAS4B-G12D to shift from the active orientation state to the inactive state. The proposed compound is also observed to stably accommodate itself in the prenyl-binding pocket of phosphodiesterase-δ, which impairs KRAS4B enrichment at the lipid bilayer, potentially reducing the proliferation of KRAS4B inside the cytoplasm and its anchoring at the bilayer. In conclusion, we report a potential inhibitor of KRAS4B-G12D with a lipid tail attached to a specific warhead, a compound which has not yet been considered for drugs targeting RAS mutants. Our work provides new ways to target KRAS4B-G12D and can also foster drug discovery efforts for the targeting of oncogenes of the RAS family and beyond.

Graphical abstract: In silico design of a lipid-like compound targeting KRAS4B-G12D through non-covalent bonds

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2023
Accepted
21 Nov 2023
First published
21 Nov 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2023,15, 19359-19368

In silico design of a lipid-like compound targeting KRAS4B-G12D through non-covalent bonds

H. Lu, Z. Hu, J. Faraudo and J. Martí, Nanoscale, 2023, 15, 19359 DOI: 10.1039/D3NR04513G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements