Issue 20, 2023

Exactly controlled linear CO liberation: an A- and B-ring simultaneously extended flavonol-based red fluorescent photoCORM

Abstract

The first visible/sun-light-triggered A/B-ring-naphthalene/biphenyl simultaneously extended flavonol based red fluorescent photoCORM, Nbp-flaH (2-([1,1′-biphenyl]-4-yl)-3-hydroxy-4H-benzo[g]chromen-4-one), was developed. By simultaneously extending π-conjugation on the A- and B-ring of 3-hydroxyflavone (FlaH), the absorption peak and emission peak of Nbp-flaH were largely red-shifted by 75 and 100 nm, respectively, relative to those of FlaH, thus emitting strong and bright red fluorescence (610 nm, near the phototherapeutic window), with a large Stokes shift of 190 nm. Therefore, Nbp-flaH can be triggered by visible/sun-light, and its location in living HeLa cells and the process of CO delivery can be real-time imaged and tracked in situ. By irradiation with visible light under O2, Nbp-flaH can release CO rapidly (t1/2 = 3.40 min) with a high yield (over 90%), and the dose of CO liberated can be quantitatively regulated within a safe and therapeutic dose range by changing the irradiation intensity or time or photoCORM dose. Nbp-flaH and its reaction products exhibit negligible toxicity (more than 85% cell viability, 24 h) and good permeability in live HeLa cells. This is the first A- and B-ring-simultaneously extended (to naphthalene and biphenyl, respectively) flavonol developed as a red fluorescent photoCORM, which can be triggered by visible/sun-light and deliver accurately and quantitatively controlled linear CO in live HeLa cells. Our work would provide not only a reliable method to precisely control the CO release dose for clinical CO therapy, but also a convenient tool for studying the biological role of CO.

Graphical abstract: Exactly controlled linear CO liberation: an A- and B-ring simultaneously extended flavonol-based red fluorescent photoCORM

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2023
Accepted
27 Apr 2023
First published
09 May 2023

Org. Biomol. Chem., 2023,21, 4297-4303

Exactly controlled linear CO liberation: an A- and B-ring simultaneously extended flavonol-based red fluorescent photoCORM

Y. Zhang, Y. Sun, C. Yu and Y. Li, Org. Biomol. Chem., 2023, 21, 4297 DOI: 10.1039/D3OB00408B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements