Issue 46, 2023

A synthetic route to artificial chiral α-amino acids featuring a 3,4-dihydroisoquinolone core through a Rh(iii)-catalyzed functionalization of allyl groups in chiral Ni(ii) complexes

Abstract

Currently, non-proteinogenic α-amino acids (α-AAs) have attracted increasing interest in bio- and medicinal chemistry. In this context, the first protocol for the asymmetric synthesis of artificial α-AAs featuring a 3,4-dihydroisoquinolone core with two stereogenic centers was successfully elaborated. A straightforward Rh(III)-catalysed C–H activation/annulation reaction of various aryl hydroxamates with a set of robust and readily available chiral Ni(II) complexes, which have allylic appendages derived from glycine (Gly), alanine (Ala) and phenylalanine (Phe), allowed incorporation of a 3,4-dihydroisoquinolone scaffold into the chiral amino acid residue. The reaction was performed in methanol and under mild conditions (at room temperature under air atmosphere), providing separable diastereomeric complexes with up to 94% total yield. The target α-AA with a 3,4-dihydroisoquinolone core in an enantiopure form was subsequently released from the obtained chiral Ni(II) complexes via an acidic decomposition in aqueous HCl, along with the recovery of the chiral auxiliary ligand.

Graphical abstract: A synthetic route to artificial chiral α-amino acids featuring a 3,4-dihydroisoquinolone core through a Rh(iii)-catalyzed functionalization of allyl groups in chiral Ni(ii) complexes

Supplementary files

Article information

Article type
Communication
Submitted
20 Sep 2023
Accepted
08 Nov 2023
First published
09 Nov 2023

Org. Biomol. Chem., 2023,21, 9143-9149

A synthetic route to artificial chiral α-amino acids featuring a 3,4-dihydroisoquinolone core through a Rh(III)-catalyzed functionalization of allyl groups in chiral Ni(II) complexes

M. A. Arsenov, N. V. Stoletova, A. F. Smol'yakov, T. F. Savel'yeva, V. I. Maleev, D. A. Loginov and V. A. Larionov, Org. Biomol. Chem., 2023, 21, 9143 DOI: 10.1039/D3OB01513K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements