Issue 10, 2023

Dual fluorescence properties and enhanced thermal stability of SrSi2O2N2:Eu2+ phosphors by coupling with g-C3N4

Abstract

Nowadays, considerable efforts have been extensively devoted to explore a general strategy for improving the color uniformity and thermal stability of phosphors, which is vital for its applications in health and comfort lighting. In this study, the SrSi2O2N2:Eu2+/g-C3N4 composites were successfully prepared via a facile and effective solid-state method to improve their photoluminescence properties and thermal stability. The coupling microstructure and chemical composition of the composites were demonstrated by high-resolution transmission electron microscopy (HRTEM) and EDS line-scanning analyses. Notably, the dual emissions at ∼460 nm (blue) and ∼520 nm (green) were observed for the SrSi2O2N2:Eu2+/g-C3N4 composite under near-ultraviolet (NUV) excitation, attributed to the g-C3N4 and 5d–4f transition of Eu2+ ions, respectively. The coupling structure will be beneficial to the color uniformity of the blue/green emitting light. Further, SrSi2O2N2:Eu2+/g-C3N4 composites exhibited a similar photoluminescence intensity compared with the SrSi2O2N2:Eu2+ phosphor even after thermal treatment at 500 °C for 2 h due to the protection of g-C3N4. The decreased decay time (1798.3 ns) of green emission for SSON/CN compared with SSON phosphor (1835.5 ns) indicated that the coupling structure suppressed the non-radiative transition and improved photoluminescence properties and thermal stability. This work provides a facile strategy to construct SrSi2O2N2:Eu2+/g-C3N4 composites with coupling structure for improved color uniformity and thermal stability.

Graphical abstract: Dual fluorescence properties and enhanced thermal stability of SrSi2O2N2:Eu2+ phosphors by coupling with g-C3N4

Article information

Article type
Paper
Submitted
28 Nov 2022
Accepted
09 Feb 2023
First published
23 Feb 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 6442-6452

Dual fluorescence properties and enhanced thermal stability of SrSi2O2N2:Eu2+ phosphors by coupling with g-C3N4

J. Wang, H. Song, P. Dong, Z. Zhao and Y. Zhang, RSC Adv., 2023, 13, 6442 DOI: 10.1039/D2RA07562H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements