Issue 14, 2023, Issue in Progress

A facile approach to obtain super-hydrophobicity for cotton fiber fabrics

Abstract

It is a challenging task to directly apply emulsified silicone oil to the surface of cotton fabric to obtain superhydrophobic properties. In this work, a temperature-responsive microgel was first synthesized and the particle size and distribution of the microgel, thermo-responsiveness, and hydrophobicity of the microgel membrane were investigated. Then, through an emulsifying PMHS/water system with microgels as a Pickering emulsifier, a series of Pickering emulsions were obtained. The results showed that the emulsion had the best stability when the microgel content was 2.14 wt% and the mass ratio of PMHS/water was 3/7. The optical microscopy showed that the oil phase could be uniformly dispersed in aqueous solution, and the liquid phase particle size was about 10–22 μm. And stratification of the Pickering emulsion did not occur when placed at room temperature for over one month. Finally, when the addition of Pickering emulsion is 50 g L−1 and the rolling rate is 80%, through a simple two-dip-two-padding treatment, a cotton fabric can obtain the superhydrophobic effect with a static contact angle of 149.6° at 25 °C and 156.4° at 45 °C. The development of this work provides a simple method to make cotton fabric obtain superhydrophobic effects.

Graphical abstract: A facile approach to obtain super-hydrophobicity for cotton fiber fabrics

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2022
Accepted
05 Mar 2023
First published
21 Mar 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 9237-9241

A facile approach to obtain super-hydrophobicity for cotton fiber fabrics

Z. Li, J. Wu, Y. Wang, Y. Li, G. Huang, B. Fei, Z. Xu, Y. Zhang and Y. Li, RSC Adv., 2023, 13, 9237 DOI: 10.1039/D2RA08189J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements