Issue 16, 2023

An ab initio investigation of the structural, mechanical, electronic, optical, and thermoelectric characteristics of novel double perovskite halides Cs2CaSnX6 (X = Cl, Br, I) for optically influenced RRAM devices

Abstract

Hybrid lead halide perovskites have been considered as promising candidates for a large variety of optoelectronic applications. By exploring novel combinations of lead-free double perovskite halides, it is possible to find a suitable replacement for poisonous lead halide perovskites, enhancing electronic and optical response for their application as optically-influenced resistive switching random access memory (RRAM). In this work, the structural, mechanical, elastic, electronic, optical, and thermoelectric characteristics of lead-free double halide perovskites were investigated by Vienna ab initio simulation package (VASP) to explore their role in RRAM. From the analysis of mechanical constraints, it is clear that all three composites of Cs2CaSnX6 (X = Cl, Br, I) are mechanically stable and ductile in nature. The electronic bandgap with and without spin–orbit coupling (SOC), and total and sub-total density of states (TDOS, sub-TDOS) have been calculated using the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) potentials. The observed direct band gaps of 3.58 eV, 3.09 eV, and 2.60 eV for Cs2CaSnCl6, Cs2CaSnBr6, and Cs2CaSnI6, respectively, reveal the suitability of these specified composites as resistive switching material for RRAM devices. Additionally, the optical characteristics, such as complex refractive index, absorption coefficient, and reflectivity of the compounds under consideration have been calculated under the action of incident photons of 0 to 14 eV energy. The thermoelectric properties of Cs2CaSnX6 (X = Cl, Br, I) double perovskite halide were computed and analyzed with the help of the BoltzTraP Code.

Graphical abstract: An ab initio investigation of the structural, mechanical, electronic, optical, and thermoelectric characteristics of novel double perovskite halides Cs2CaSnX6 (X = Cl, Br, I) for optically influenced RRAM devices

Associated articles

Article information

Article type
Paper
Submitted
05 Jan 2023
Accepted
15 Mar 2023
First published
11 Apr 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 11192-11200

An ab initio investigation of the structural, mechanical, electronic, optical, and thermoelectric characteristics of novel double perovskite halides Cs2CaSnX6 (X = Cl, Br, I) for optically influenced RRAM devices

S. Kiran, U. Mumtaz, A. Mustafa, M. Imran, F. Hussain, U. Rasheed, R. M. A. Khalil, E. A. Khera and A. Nazir, RSC Adv., 2023, 13, 11192 DOI: 10.1039/D3RA00078H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements