Issue 11, 2023, Issue in Progress

Cellulose-based sponge@ZIF-8 from waste straws for water disinfection

Abstract

In this study, zeolitic imidazolate framework-8 (ZIF-8) nanoparticles can be readily in situ generated on the skeleton surface throughout the entire structure of cellulose-based sponges obtained from waste corn straws via a hydrothermal process. Taking natural corn straws as the basic ingredient, the Water Cellulose-based Sponge@ZIF-8 (WCSZ) composite inherits the highly porous structure of straws, which is beneficial for the movement of H2O molecules in both horizontal and vertical directions. A robust H-bond topological network is weaved between abundant hydroxyl groups of the corn straw cell wall matrix and H2O molecules in the honeycomb cellular structure. Based on the topological network, the WCSZ composite maintains sufficient mechanical compressibility and elasticity, which could sustain repeated squeezing without structural failure. The WCSZ composite can not only bear a compressive strain as high as 60% but also completely recover its original height after the load is removed, exhibiting excellent mechanical property. More importantly, the WCSZ composite also presents exceptional antibacterial activities after ZIF-8 nanoparticles were introduced (antibacterial rate: 99.9%). Consequently, the WCSZ composite is an ideal candidate for highly efficient elimination of bacteria as the reusable water treatment material.

Graphical abstract: Cellulose-based sponge@ZIF-8 from waste straws for water disinfection

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2023
Accepted
21 Feb 2023
First published
08 Mar 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 7554-7560

Cellulose-based sponge@ZIF-8 from waste straws for water disinfection

J. Li, Y. Zhang and G. Sui, RSC Adv., 2023, 13, 7554 DOI: 10.1039/D3RA00243H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements