The one/two atom size-reduction of [Au23SCy16]− induced by the [Au6(dppp)4]2+ cluster†
Abstract
The recent progress in atomically precise metal (Au, Ag etc.) nanoclusters has greatly enriched the molecular-level mechanistic understanding of metal nanomaterials. Herein, using two meta-stable (easy formation, easy transformation) clusters, i.e. [Au23SCy16]− and [Au6(dppp)4]2+ (HSCy and dppp denote cyclohexanethiol and 1,3-bis(diphenylphosphino)propane), as the reaction precursors, the etching of Au23 occurs smoothly, giving the one/two-atom size-reduced [Au21SCy12(dppp)2]+ and [Au22SCy14(dppp)]2+ as the major products. Structural analysis and DFT calculations indicate that the active reaction site of Au23 lies in the core–shell interference of the bi-capped icosahedral Au15 core and the AuS2 motifs. The fluorescence, band gap, and thermostability of the Au21 cluster products are improved compared to that of the Au23 precursors.