Issue 20, 2023

Optimizing the performance of Auy/Nix/TiO2NTs photoanodes for photoelectrochemical water splitting

Abstract

Water splitting using photoelectrochemical (PEC) techniques is thought to be a potential method for creating green hydrogen as a sustainable energy source. How to create extremely effective electrode materials is a pressing concern in this area. In this work, a series of Nix/TiO2 anodized nanotubes (NTs) and Auy/Nix/TiO2NTs photoanodes were prepared by electrodeposition via cyclic voltammetry and UV-photoreduction, respectively. The photoanodes were characterized by several structural, morphological, and optical techniques and their performance in PEC water-splitting for oxygen evolution reaction (OER) under simulated solar light was investigated. The obtained results revealed the nanotubular structure of TiO2NTs was preserved after deposition of NiO and Au nanoparticles while the band gap energy was reduced allowing for effective utilization of solar light with lower charge recombination rate. The PEC performance was monitored and it was found that the photocurrent densities of Ni20/TiO2NTs and Au30/Ni20/TiO2NTs were 1.75-fold and 3.25-fold that of pristine TiO2NTs, respectively. It was confirmed that the performance of the photoanodes depends on the number of electrodeposition cycles and duration of photoreduction of gold salt solution. The observed enhanced OER activity of Au30/Ni20/TiO2NTs could be attributed to the synergism between the local surface plasmon resonance (LSPR) effect of nanometric gold which increased solar light harvesting and the p–n heterojunction formed at the NiO/TiO2 interface which led to better charge separation and transportation suggesting its potential application as an efficient and stable photoanode in PEC water splitting for H2 production.

Graphical abstract: Optimizing the performance of Auy/Nix/TiO2NTs photoanodes for photoelectrochemical water splitting

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2023
Accepted
02 May 2023
First published
09 May 2023
This article is Open Access
Creative Commons BY license

RSC Adv., 2023,13, 14018-14032

Optimizing the performance of Auy/Nix/TiO2NTs photoanodes for photoelectrochemical water splitting

S. K. Mohamed, A. M. A. Bashat, H. M. A. Hassan, N. Ismail and W. M. A. El Rouby, RSC Adv., 2023, 13, 14018 DOI: 10.1039/D3RA02011H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements