Issue 23, 2023

In situ oxidized TiO2/MXene ultrafiltration membrane with photocatalytic self-cleaning and antibacterial properties

Abstract

Self-cleaning, antimicrobial ultrafiltration membranes are urgently needed to alleviate the low flux problems caused by membrane fouling in water treatment processes. In this study, in situ generated nano-TiO2 MXene lamellar materials were synthesized and then 2D membranes were fabricated using vacuum filtration. The presence of nano TiO2 particles as an interlayer support layer widened the interlayer channels, and also improved the membrane permeability. The TiO2/MXene composite on the surface also showed an excellent photocatalytic property, resulting in enhanced self-cleaning properties and improved long-term membrane operational stability. The best overall performance of the TiO2/MXene membrane at 0.24 mg cm−2 loading was optimal, with 87.9% retention and 211.5 L m−2 h−1 bar−1 flux at a filtration of 1.0 g L−1 bovine serum albumin solution. Noticeably, the TiO2/MXene membranes showed a very high flux recovery under UV irradiation with a flux recovery ratio (FRR) of 80% as compared to the non-photocatalytic MXene membranes. Moreover, the TiO2/MXene membranes demonstrated over 95% resistance against E. coli. And the XDLVO theory also showed that the loading of TiO2/MXene slowed down the fouling of the membrane surface by protein-based contaminants.

Graphical abstract: In situ oxidized TiO2/MXene ultrafiltration membrane with photocatalytic self-cleaning and antibacterial properties

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2023
Accepted
18 May 2023
First published
25 May 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 15843-15855

In situ oxidized TiO2/MXene ultrafiltration membrane with photocatalytic self-cleaning and antibacterial properties

S. Xu, C. Zhao, G. Li, Z. Shi and B. Liu, RSC Adv., 2023, 13, 15843 DOI: 10.1039/D3RA02230G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements