Dielectric chiral metasurfaces for enhanced circular dichroism spectroscopy at near infrared regime
Abstract
Numerous applications of chiro-optical effects can be found in nanophotonics, including imaging and spin-selective absorption, particularly in sensing for separating and detecting chiral enantiomers. Flat single-layer metasurfaces composed of chiral or achiral sub-wavelength structures offer unique properties to manipulate the light due to their extraordinary light–matter interaction. However, at optical wavelengths, the generation of strong chirality is found to be challenging via conventional chiral metasurface approaches. This work intends to design and optimize a dielectric chiral meta-nano-surface based on a diatomic design strategy to comprehend giant chiro-optical effects in the near-infrared (NIR) regime for potential application in circular dichroism (CD) spectroscopy. Instead of using a single chiral structure that limits the CD value at optical wavelengths, the proposed metasurface used a diatomic (two meta-atoms with distinct geometric parameters) chiral structure as a building block to significantly enhance the chiro-optical effect. Combining both meta-atoms in a single periodicity of the building block introduces constructive and destructive interferences to attain the maximum circular dichroism value exceeding 75%. Moreover, using multipolar resonance theory, the physics behind the generation of giant chiro-optical effects have also been investigated. The proposed dielectric chiral meta-platform based on the extra degree of freedom can find application in compact integrated optical setups for CD spectroscopy, enantiomer separation and detection, spin-dependent color filters, and beam splitters.