Tm3+; Yb3+:Zn2TiO4 near infrared to blue upconversion phosphors for anti-counterfeit applications
Abstract
Tm3+; Yb3+:Zn2TiO4 samples have been synthesized using a solid state reaction route. The phase, lattice parameters, crystallite size has been examined using X-ray Diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). An intense peak of Yb3+ codoped samples is observed near ∼957 nm due to the 2F7/2 → 2F5/2 transition in diffuse reflectance spectra (DRS), which confirms the presence of Yb3+ ion in the prepared compound. The optical band gap of Yb3+ codoped samples has been calculated using Kubelka–Munk function. The Raman spectra corresponds to incorporation of Tm3+/Yb3+ at the octahedral and tetrahedral site of the spinel host. The emission spectra recorded by using 370 nm excitation wavelength shows intense blue colour band corresponding to the 1G4 → 3H6 transition of Tm3+ ion. The upconversion (UC) emission spectra recorded by using 980 nm laser excitation source shows emission bands due to the 1G4 → 3H6, 1G4 → 3F4 and 3H4 → 3H6 transitions of Tm3+ ion in the host matrix lying in the blue, red and NIR regions respectively. There is effective enhancement of about ∼35 times in the blue UC emission intensity with incorporation of Yb3+ at 3% doping concentration in the prepared sample. The anti-counterfeit application of the optimized upconverting phosphor has been successfully demonstrated.
- This article is part of the themed collection: Photoluminescence of lanthanide-doped phosphor materials