Perovskite SrZrO3:Ho3+ phosphors: synthesis, structure, Judd–Ofelt analysis and photoluminescence properties
Abstract
A series of SrZrO3:xHo3+ (x = 0.01, 0.03, 0.05, 0.07, 0.09, and 0.11 mol) perovskite phosphors have been synthesized by using the sol–gel technique. The structural and optical characteristics of the prepared phosphors have been investigated through powder XRD, FT-IR, UV-visible diffuse reflectance, and photoluminescence analysis. The photoluminescence emission spectra showed a bright characteristic peak at 545 nm (5F4 + 5S2 → 5I8) under the 454 nm excitation, which exhibits emission in the green region of the electromagnetic spectrum. The emission intensity of the phosphors starts decreasing slowly beyond 3 mol% Ho3+ ions concentration due to concentration quenching, which is attributed to the dipole–dipole interaction between Ho3+ ions. The site symmetry of the Ho3+ ions has been studied by estimating the relative Judd–Ofelt intensity parameters (Ωλ, where λ = 2, 4, 6) from the photoluminescence excitation spectrum of the SrZrO3:0.03Ho3+ phosphor. The obtained findings suggest that the synthesized phosphors will be favorable for their bright green emission and thus, can be widely used for different optoelectronic applications.
- This article is part of the themed collection: Photoluminescence of lanthanide-doped phosphor materials