Issue 42, 2023, Issue in Progress

Synthesis of new class of indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors

Abstract

Ectonucleotidases inhibitors (ENPPs, e5′NT (CD73) and h-TNAP) are potential therapeutic candidates for the treatment of cancer. Adenosine, the cancer-developing, and growth moiety is the resultant product of these enzymes. The synthesis of small molecules that can increase the acidic and ionizable structure of adenosine 5-monophosphate (AMP) has been used in traditional attempts to inhibit ENPPs, ecto-5′-nucleotidase and h-TNAP. In this article, we present a short and interesting method for developing substituted indole acetic acid sulfonate derivatives (5a–5o), which are non-nucleotide based small molecules, and investigated their inhibitory potential against recombinant h-ENPP1, h-ENPP3, h-TNAP, h-e5′NT and r-e5′NT. Their overexpression in the tumor environment leads to high adenosine level that results in tumor development as well as immune evasion. Therefore, selective, and potent inhibitors of these enzymes would be expected to decrease adenosine levels and manage tumor development and progression. Our intended outcome led to the discovery of new potent inhibitors like' 5e (IC50 against h-ENPP1 = 0.32 ± 0.01 μM, 58 folds increased with respect to suramin), 5j (IC50 against h-ENPP3 = 0.62 ± 0.003 μM, 21 folds increase with respect to suramin), 5c (IC50 against h-e5′NT = 0.37 ± 0.03 μM, 115 folds increase with respect to sulfamic acid), 5i (IC50 against r-e5′NT = 0.81 ± 0.05 μM, 95 folds increase with respect to sulfamic acid), and 5g (IC50 against h-TNAP = 0.59 ± 0.08 μM, 36 folds increase with respect to Levamisole). Molecular docking studies revealed that inhibitors of these selected target enzymes induced favorable interactions with the key amino acids of the active site, including Lys255, Lys278, Asn277, Gly533, Lys528, Tyr451, Phe257, Tyr340, Gln465, Gln434, Lys437, Glu830, Cys818, Asn499, Arg40, Phe417, Phe500, Asn503, Asn599, Tyr281, Arg397, Asp526, Phe419 and Tyr502. Enzyme kinetic studies revealed that potent compounds such as 5j and 5e blocked these ectonucleotidases competitively while compounds 5e and 5c presented an un-competitive binding mode. 5g revealed a non-competitive mode of inhibition.

Graphical abstract: Synthesis of new class of indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2023
Accepted
02 Oct 2023
First published
10 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 29496-29511

Synthesis of new class of indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors

M. S. Khan Jadoon, J. Pelletier, J. Sévigny and J. Iqbal, RSC Adv., 2023, 13, 29496 DOI: 10.1039/D3RA04266A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements