Issue 44, 2023, Issue in Progress

Molecular simulation of the rheological properties and shear thinning principles of supramolecular drilling fluids at different burial depths

Abstract

In order to investigate the rheological properties and shear thinning principles of supramolecular drilling fluids, the salt-responsive supramolecular ionomer polymers with different components were designed and the change in shear viscosity of supramolecular polymer drilling fluid system with shear rate was studied using the molecular dynamics simulation method. The result indicated that the ionic supramolecular polymer drilling fluid system exhibits better self-assembly performance than the nonionic acrylamide drilling fluid system. Moreover, the drilling fluid system exhibits the best rheological properties and self-assembly performance when the feeding ratios of the three monomers in the two polymers are m : n : o = 5 : 90 : 5 and m : n : o = 30 : 40 : 30, respectively. The shear viscosity recovery rate of the #3 ionic supramolecular polymer drilling fluid system at different burial depths (1–5 km) is >87%, where the shear viscosity is mainly determined at ambient pressure. The shear thinning phenomenon of the supramolecular polymer drilling fluid system occurs because of the combined effect of the polymer molecular orientation and entanglement structure. When the shear rate is above a critical value, the polymer molecules are oriented along the flow field direction, decreasing the shear viscosity. However, when the shear rate is very high, the entanglement structure of the molecules is opened and the mesh structure of the fluids is disrupted, decreasing the shear viscosity of the drilling fluid.

Graphical abstract: Molecular simulation of the rheological properties and shear thinning principles of supramolecular drilling fluids at different burial depths

Article information

Article type
Paper
Submitted
26 Jul 2023
Accepted
02 Oct 2023
First published
19 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 30726-30732

Molecular simulation of the rheological properties and shear thinning principles of supramolecular drilling fluids at different burial depths

Y. Li, Q. Li, X. Yang and M. Ning, RSC Adv., 2023, 13, 30726 DOI: 10.1039/D3RA05045A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements