Issue 46, 2023, Issue in Progress

Synthesis and biological evaluation of capsaicin analogues as antioxidant and neuroprotective agents

Abstract

Capsaicin and its analogues 3a–3q were designed and synthesized as potential new antioxidant and neuroprotective agents. Many analogues exhibited good antioxidant effects, and some showed more potent free radical scavenging activities than the positive drug quercetin (IC50 = 8.70 ± 1.75 μM for DPPH assay and 13.85 ± 2.87 μM for ABTS assay, respectively). The phenolic hydroxyl of capsaicin analogues was critical in determining antioxidant activity. Among these compounds, 3k displayed the most potent antioxidant activity. Cell vitality tests revealed that the representative compound 3k was good at protecting cells from H2O2-induced oxidative damage at low concentrations (cell viability increased to 90.0 ± 5.5% at 10 μM). In addition, the study demonstrated that 3k could reduce intracellular ROS accumulation and increase GSH levels to prevent H2O2-induced oxidative stress in SY5Y cells. In the mitochondrial membrane potential assay, 3k significantly increased the MMP level of SY5Y cells treated with H2O2 and played an anti-neuronal cell death role. These results provide a promising strategy to develop novel capsaicin analogues as potential antioxidant and neuroprotective agents.

Graphical abstract: Synthesis and biological evaluation of capsaicin analogues as antioxidant and neuroprotective agents

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Jul 2023
Accepted
26 Oct 2023
First published
01 Nov 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 32150-32159

Synthesis and biological evaluation of capsaicin analogues as antioxidant and neuroprotective agents

M. Xie, H. Wu, J. Bian, S. Huang, Y. Xia, Y. Qin and Z. Yan, RSC Adv., 2023, 13, 32150 DOI: 10.1039/D3RA05107B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements