Issue 45, 2023

High-efficiency all-fluorescent white organic light-emitting diode based on TADF material as a sensitizer

Abstract

The use of TADF materials as both sensitizers and emitters is a promising route to achieve high-efficiency all-fluorescent white organic light-emitting diodes (WOLEDs). In this study, the thermally-activated delayed-fluorescent (TADF) material DMAC-TRZ (9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine) was selected as a sensitizer for the conventional fluorescent emitter DCJTB (4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran), which was co-doped in a wide bandgap host of DPEPO (bis[2-(diphenylphosphino)phenyl]ether oxide) to fabricate WOLEDs. For the emitting layer of DPEPO:DMAC-TRZ:DCJTB, the DPEPO host can dilute the exciton concentration formed on the DMAC-TRZ sensitizer, which benefits the suppression of exciton quenching. The effect of the doping concentration of DCJTB on the carrier recombination and energy transfer process was investigated. With an optimized doping concentration of DCJTB as 0.8%, highly efficient WOLED was achieved with a maximum external quantum efficiency (EQE), power efficiency (PE), and current efficiency (CE) of 11.05%, 20.83 lm Wāˆ’1, and 28.83 cd Aāˆ’1, respectively, corresponding to the Commission Internationale de Iā€² Eclairage (CIE) coordinates of (0.45, 0.46). These superior performances can be ascribed to the fact that the hole-trapping effect of the emitter and Dexter energy transfer (DET) from sensitizer to emitter can be suppressed simultaneously by the extremely low doping concentration.

Graphical abstract: High-efficiency all-fluorescent white organic light-emitting diode based on TADF material as a sensitizer

Article information

Article type
Paper
Submitted
20 Aug 2023
Accepted
12 Oct 2023
First published
30 Oct 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 31632-31640

High-efficiency all-fluorescent white organic light-emitting diode based on TADF material as a sensitizer

J. Hua, Z. Zhan, Z. Cheng, W. Cao, Y. Chai, X. Wang, C. Wei, H. Dong and J. Wang, RSC Adv., 2023, 13, 31632 DOI: 10.1039/D3RA05680E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements