Issue 50, 2023, Issue in Progress

Study on the effect of an ultrasound assisted reaction on the crystallization properties of recovered cryolite

Abstract

During the treatment of spent cathode carbon from electrolytic aluminum, a large amount of fluoride containing wastewater is generated. By adding different sodium source and aluminum source reagents, under the conditions of different addition order, pH, temperature and time, the effects of conventional static reaction, stirring reaction and ultrasonic assisted reaction on the crystallization properties of recovered cryolite were investigated. The results showed that under the optimum reaction conditions (sodium source: NaCl, aluminum source: AlCl3, the molar ratio of AlCl3 to NaCl is 1 : 3, addition order: first addition of AlCl3 and then NaCl, pH is 8.57, time is 40 min, temperature at room temperature), the removal efficiency of fluoride ions was the highest when ultrasound assisted treatment was used. The cryolite products with ultrasound assisted crystallization and without ultrasound assisted crystallization were characterized using SEM and TEM. The results showed that the crystal particles obtained by ultrasound assisted crystallization were relatively concentrated, and the morphology was regular and the surface was smooth. Design Expert orthogonal software was used to design the response surface test, it was found that ultrasound time has the most significant impact on the content of recovered cryolite among single factors, and the interaction between ultrasound frequency and ultrasound power, ultrasound power and ultrasound time was highly significant among multiple factors.

Graphical abstract: Study on the effect of an ultrasound assisted reaction on the crystallization properties of recovered cryolite

Article information

Article type
Paper
Submitted
30 Sep 2023
Accepted
29 Nov 2023
First published
04 Dec 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 35359-35368

Study on the effect of an ultrasound assisted reaction on the crystallization properties of recovered cryolite

C. Wang and S. Mao, RSC Adv., 2023, 13, 35359 DOI: 10.1039/D3RA06661D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements