Issue 49, 2023, Issue in Progress

Strain hardening in biaxially stretched elastomers undergoing strain-induced crystallization

Abstract

We reveal strain hardening due to strain-induced crystallization (SIC) in both cross-linked natural rubber (NR) and its synthetic analogue (IR) under planar extension, a type of biaxial stretching where the rubber is stretched in one direction while maintaining the dimension in the other direction unchanged. Utilizing a bespoke biaxial tensile tester, planar extension tests were conducted on geometrically designed and optimally shaped sheet specimens to achieve a uniform and highly strained field. Evident strain hardening due to SIC was observed in both stretching (x) and constrained (y) directions when the stretch (λx) exceeded a critical value λx,c. The λx,c value aligned with the onset stretch of SIC in planar extension, as determined by wide-angle X-ray scattering measurements. Interestingly, the nominal stress ratio between the constrained (σy) and stretching (σx) axes as a function of λx exhibited a distinct minimum near λx,c. This minimum signifies that the increment of σx induced by an increase in λx surpasses that of σy before strain hardening (λx < λx,c), while the relationship is reversed in the strain hardening region (λx > λx,c). The λx,c value in planar extension (4.7 for IR and 4.5 for NR) was slightly lower than that in uniaxial extension (5.7 for IR and 5.2 for NR). This difference in λx,c values can be explained by considering a single mechanical work required for strain hardening, owing to the relatively small dissimilarities between the two stretching modes. This investigation contributes significantly to the understanding of SIC phenomena in biaxial stretching, and provides valuable insights for predicting the mechanical response of SIC rubber under various deformation conditions.

Graphical abstract: Strain hardening in biaxially stretched elastomers undergoing strain-induced crystallization

Article information

Article type
Paper
Submitted
21 Oct 2023
Accepted
21 Nov 2023
First published
27 Nov 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 34630-34636

Strain hardening in biaxially stretched elastomers undergoing strain-induced crystallization

S. Hiraiwa, T. Mai, K. Tsunoda and K. Urayama, RSC Adv., 2023, 13, 34630 DOI: 10.1039/D3RA07173A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements