Issue 7, 2023

Diastereodivergent cis- and trans-fused [4 + 2] annulations of cyclic 1,3-dienes and 1-azadienes via ligand-controlled palladium catalysis

Abstract

Despite the blossoming of reports of diastereodivergent synthesis over the past years, switchable control of the stereochemistry of the bridgehead atoms of the fused frameworks has been significantly underdeveloped. Here we disclose the ability of Pd0-π-Lewis base catalysis to finely reverse the concerted inverse-electron-demand aza-Diels–Alder cycloaddition reaction between cyclic 1,3-dienes and aurone-derived 1-azadienes. In contrast, the in situ-formed HOMO-energy-increased Pd02-complexes of cyclic 1,3-dienes underwent a cascade vinylogous Michael addition/allylic amination process with 1-azadienes. Moreover, judicious selection of chiral ligands allowed for switchable diastereodivergent [4 + 2] annulations to be accomplished, resulting in the construction of both cis- and trans-fused tetrahydropyridine architectures in high yields with moderate to excellent stereoselectivity levels. A variety of acyclic 1,3-dienes and 1-heterodienes were also applied, and furnished a structural diversity of enantioenriched frameworks.

Graphical abstract: Diastereodivergent cis- and trans-fused [4 + 2] annulations of cyclic 1,3-dienes and 1-azadienes via ligand-controlled palladium catalysis

Supplementary files

Article information

Article type
Edge Article
Submitted
12 Dec 2022
Accepted
16 Jan 2023
First published
17 Jan 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2023,14, 1896-1901

Diastereodivergent cis- and trans-fused [4 + 2] annulations of cyclic 1,3-dienes and 1-azadienes via ligand-controlled palladium catalysis

Y. Hu, J. Huang, R. Yan, Z. Chen, Q. Ouyang, W. Du and Y. Chen, Chem. Sci., 2023, 14, 1896 DOI: 10.1039/D2SC06813C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements