Issue 14, 2023

Gold(i)-containing light-emitting molecules with an inverted singlet–triplet gap

Abstract

Delayed fluorescence from molecules with an inverted singlet–triplet gap (DFIST) is the consequence of the unusual reverse order of the lowest excited singlet (S1) and triplet (T1) states of thermally activated delayed fluorescence (TADF) emitters. Heptazine (1,3,4,6,7,9,9b-heptaazaphenalene) derivatives have an inverted singlet–triplet gap thanks to the combination of multiple resonance (MR) effects and a significant double excitation character. Here, we study computationally the effect of gold(I) metalation and coordination on the optical properties of heptazine (molecule 4) and the phosphine-functionalized 2,5,8-tris(dimethylphosphino)heptazine derivatives (molecules 1–3). Ab initio calculations at the approximate second-order coupled cluster (CC2) and extended multiconfigurational quasi degenerate perturbation theory at the second order (XMC-QDPT2) levels show that molecules 1–4 have an inverted singlet–triplet gap due to the alternating spatial localization of the electron and hole of the exciton in the heptazine core. A non-vanishing one-electron spin–orbit coupling operator matrix element between T1 and Image ID:d3sc00345k-t1.gif and a fast S1 ← T1 intersystem crossing rate constant (kISC) calculated at the XMC-QDPT2(12,12) level of theory for molecule 4 suggest that this new family of complexes may be the first organometallic DFIST emitters reported.

Graphical abstract: Gold(i)-containing light-emitting molecules with an inverted singlet–triplet gap

Supplementary files

Article information

Article type
Edge Article
Submitted
19 Jan 2023
Accepted
15 Feb 2023
First published
20 Mar 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 3873-3880

Gold(I)-containing light-emitting molecules with an inverted singlet–triplet gap

D. Blasco, R. T. Nasibullin, R. R. Valiev and D. Sundholm, Chem. Sci., 2023, 14, 3873 DOI: 10.1039/D3SC00345K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements